
Real-time Motion Vision for Robot Controlin Unstructured EnvironmentsJohn Wood�ll� Ramin Zabihy Oussama KhatibzAbstractThe control of robots in unstructured environments demands real-time,general purpose vision. We have designed a visual tracking system whichmakes use of motion to pick out and track moving objects without requiringinformation about their shape. The vision system has been implemented,and runs in real-time on a graphics accelerator in a Sun workstation. It hasbeen used to provide visual feedback for a Puma manipulator controlled inoperational space. The manipulator keeps a camera trained on a movingobject. This robotic camera robustly follows people walking around in anunmodi�ed room.1 IntroductionReal-time sensor-based control of robots has been a major research theme in robotics. Visualsensing has enormous potential for providing information about the environment. However,computational vision has proven to be very di�cult, especially under the constraint of real-timeoperation. As a result, most robots using real-time visual feedback are capable of operation onlyin highly structured environments. For unstructured environments, a more general purpose real-time vision system is required.In this paper, we describe a general purpose vision system which performs real-time trackingof moving objects. By relying purely on motion information, the system is capable of �nding andtracking objects whose shape is not known in advance, even when the camera itself is moving.The visual capabilities of this system can be divided into two parts: motion primitives thattake images as input; and the higher level operations, tracking and segmentation, that use the�Interval Research, 1801 Page Mill Road, Building C, Palo Alto, CA 94304yRobotics Laboratory, Computer Science Department, Stanford University, StanfordCaliforniazRobotics Laboratory, Computer Science Department, Stanford University, StanfordCalifornia 1

results of these primitive computations. The input to the vision system is a consecutive set ofimages, and the resulting output is a stream of binary images. For each input image, the output,called an object bitmap, indicates the image extent of the tracked object.The basis for the motion measurement algorithm is a dense optical
ow computation whichis performed at every point in the image. The resulting
ow �eld describes the motion of sceneelements between consecutive images. This method can also be used to supply stereo depthinformation.Once the optical
ow computation is completed, a tracking algorithm uses the result toupdate the position of a moving object, while a segmentation routine uses it to identify thecamera-relative extent of the moving object. To �nd and track an object, the robot controlmodule merely requests that segmentation be used to �nd a moving object and passes along theresult to be tracked. Since there is no requirement that the object's appearance be speci�ed inadvance, the system is well-suited for unstructured environments. In particular, it can handleobjects of unknown or changing shape (i.e., unmodeled or non-rigid objects), as long as theyremain in motion.This vision algorithm has been implemented, and runs in real-time using a graphics acceleratoron a Sun workstation. It processes 8-bit gray level images whose resolution is 128 by 128 at10{15 frames per second, a rate that is suitable for tracking control. The system has been usedto provide visual feedback for a Puma 560 manipulator controlled in operational space to keep acamera trained on a moving object. This robotic camera is capable of robustly following peoplewalking around in an unmodi�ed room.We begin the paper with a survey of some related work, and then turn to the vision system.In section 3.1 we present the overall system architecture. There are three major components:real-time motion and stereo algorithms, described in section 3.2; an algorithm for tracking amoving object, described in section 3.3; and segmentation techniques for �nding a moving object,discussed in section 3.4. Finally, we discuss the robotic camera and show some experimentalresults.2 Related workPrior knowledge of the objects to be seen or of their visual properties can be used to simplifyvision tasks. Making use of such prior knowledge has allowed several researchers to build real-time vision capabilities. Lowe [5] has built a system that �nds and keeps track of the three-dimensional (3-D) position and orientation of an articulated but otherwise rigid object. Thepre-speci�cation of the dimensions and articulations of the object allow the vision system tofocus on salient details that are expected to be in the scene. Yamauchi [10] has constructed asystem that allows a robot arm to juggle a balloon. The balloon is known to be of a dark color,and the environment is known to be light colored. The vision system can rapidly pick out theballoon in an image by looking for a dark region. The position of the balloon in two binocularimages can be used to determine the 3-D position of the balloon with ease.These vision systems work exceptionally well in dynamic environments for objects that havebeen previously speci�ed. However, in a natural, unstructured environment, there can be noexhaustive list of speci�cations of all the objects that can be seen. Nor can it be the casein an unstructured image sequences that all objects of interest can be distinguished by somepreviously speci�ed set of visual properties. A vision system for unstructured image sequencesmust have additional capabilities that do not depend on prior knowledge of a very restrictedsubject matter.Although much work has been done on computer vision for natural, unstructured scenes,little has addressed issues of real-time performance. We return to the topic of general real-timevision capabilities at the end of section 3.3.3 Real-time motion trackingIn this section we describe a vision system that picks out a moving object and keeps track of itscamera-relative extent in the scene. The system is general enough to be suited in unstructuredenvironments, as there is no requirement that the object's appearance be speci�ed in advance.In particular, the system can handle objects of unknown or changing shape (i.e., unmodeled ornon-rigid objects), as long as they are moving. 2

Figure 1: An example of the input and output of the tracking system: a swinging mug
Motion OpticalFlowFields ObjectBitmapsTracking ControlSegmentationFigure 2: Vision system architectureThe input to the vision system is a stream of images. The output is a stream of binaryimages. For each input image, the output, called an object bitmap, indicates the image extent ofthe tracked object. A typical image depicting a swinging mug is shown in �gure 1, along withthe corresponding output.13.1 System architectureThe visual capabilities of our system can be divided into motion primitives that take imagesas input, and the higher level operations tracking and segmentation that use the results of theprimitive computations. The overall architecture of the vision system can be seen in �gure 2.Arrows signifying data paths show that information
ows primarily in a single direction, fromimages (which enter at left) to object centroids (which exit at right).The motion measurement algorithm computes a dense optical
ow �eld, which describes themotion of scene elements between consecutive images. Tracking uses the optical
ow �elds toupdate the position of an object as it moves, while segmentation uses them to identify a movingobject. The control module tells segmentation when to look for moving objects, and passes theresults along to be tracked.First we describe the motion measurement algorithm, and then turn to tracking and segmen-tation. A more complete discussion of the algorithms appears in [9].1The vision system is capable of tracking several objects at the same time, but for simplicityof explanation we will focus on a single tracked object.3

3.2 Motion measurementGiven a temporally sequential pair of images, the motion computation must produce a denseoptical
ow �eld that determines for each pixel in the �rst image a corresponding pixel in thesecond image (i.e., where it has moved). The stereo depth task is similar, but starts with astereo pair of images and produces a depth map that determines for each pixel on one image acorresponding, laterally displaced pixel on the other image.Our motion and stereo computations use an area based approach that relies on correlatingintensity values. Area-based motion and stereo algorithms usually rely on two criteria to de-termine the most likely displacement for each pixel: how similar are the local area on the �rstimage and its corresponding local area on the second image, and (because objects in the worldtend to cohere) how well do neighboring points agree on their displacement. These two criterianeed to be combined to determine motion at each pixel.One approach to computing motion or depth �elds is to de�ne a global optimality criterionand then to optimize. Poggio [8] suggests, for example,ZZ � r2G � (IL(x; y)� IR(x+D(x; y); y))2+ �(rD)2 � dx dyas a regularization functional for stereo depth, where IL and IR are the left and right images, Dis the disparity map, � is a constant, G is a Gaussian and � denotes convolution. The �rst termmeasures the goodness of match, while the second term measures smoothness of the resultingdisparities. A depth map can be generated from a stereo pair by numerical minimization.Given our concern with real-time performance, our approach to combining the two criteriainvolves no iteration. Our algorithm has two phases: �rst, we �nd a good initial motion estimateusing Sum of Squared Di�erences (SSD) correlation; then we smooth these motion estimatesusing mode �ltering.Initially, we �nd for each pixel on the image Ik the best corresponding pixel on the nextimage Ik+1. This correspondence is determined using SSD correlation on intensity values foreach point in a small local radius. For two consecutive images Ik and Ik+1, given a correlationwindow �, we compute an SSD measure of the dissimilarity of the pixels p and p0E(p; p0) � X�2�(Ik(p+ �)� Ik+1(p0 + �))2:For each pixel p in image Ik, the result of initial motion estimation is a pixel p0 in image Ik+1lying within a small local radius of p, that minimizes E(p; p0). In the current implementationthe local radius is an ellipse containing 37 pixels.Our motion computation uses a correlation window � that consists of only 5 pixels (thecenter pixel and its 4-connected neighbors). This is considerably smaller than typical correlationwindows. The small window size allows us to handle rotations and non-uniform motions.The disadvantage of a small window size is that it can give noisy results. We handle thisby a second stage in our algorithm, where the initial motion estimate is smoothed to enforceneighborhood agreement. The �nal optical
ow �eld is generated by determining for eachpixel the most popular initial disparity estimate surrounding the pixel. This step, called mode�ltering, preserves discontinuities at edges while smoothing the optical
ow �elds to reducenoise.The output of the motion measurement algorithm is an optical
ow �eld, which can also beviewed as a map from Ik to Ik+1. Both phases of the motion computation can be computede�ciently without iteration.The stereo algorithm is analogous, except that the search window is linear rather than ellip-tical. Its output is a dense disparity �eld in which nearby scene elements are represented bylarge disparities and distant elements are represented by small disparities.Other researchers such as Coombs [1] and Matthies [6] have obtained real-time stereo usingimage-processing boards from Datacube. Nishihara [7] and Inoue et al. [3] use custom hardwareto implement real-time correlation for motion (as well as stereo in Nishihara's case). Inoue'swork is particularly close to ours in its reliance on gray-level correlation (although the correlationmeasure he uses is jx � yj rather than (x � y)2). Nishihara relies on binary correlation of the4

sign bit of the result of convolving with a Laplacian. Our approach di�ers from theirs in our useof small correlation windows and mode �ltering. In addition, we produce a motion estimate atevery point in the image, while Inoue and Nishihara produce a sparser, but still dense, output.Computing optical
ow is necessary for picking out moving objects and for determining thecorrespondence between image components. However, tracking of a moving object requires morethan individual motion estimates; it requires some amount of cross-temporal aggregation andintegration.3.3 TrackingThe goal of tracking is to maintain an object's location across multiple images. Due to theneed for real-time performance, the representations used in the vision system are all retinotopicmaps at the same scale as the image. In particular an object bitmap, or tracked object | therepresentation of the object being tracked | is merely an arbitrary set of pixels.The tracking algorithm is an iterative one. On each iteration, it takes as input an optical
ow �eld showing the motion between images Ik and Ik+1, and an object bitmap representingthe location of an object in image Ik. It produces as output a new tracked object representingthe location of the object in image Ik+1.The tracking algorithm has two steps: projecting the tracked object through the optical
ow�eld, and improving or adjusting the object bitmap by using regions of similar motion. We willdescribe each in turn.Projecting the tracked object through the optical
ow �eld is a simple notion. The optical
ow �eld is a map from pixels to pixels, that determines for each pixel on the �rst image, acorresponding successor pixel on the second image. The input tracked object is a set of pixelson the �rst image. The output tracked object, the result of projection, is the set of successorpixels of pixels in the input tracked object.The need to improve the estimate of the object's location arises because the tracking algorithmis iterative. The input tracked object on one iteration results from previous motion computationsand projections. The optical
ow �eld tends to be slightly inaccurate, and projecting throughthe optical
ow �eld tends to distort the tracked object. Improving the tracked object is possiblesince an object moving in a scene will tend to produce discontinuities in the optical
ow �eld atits perimeter. The adjustment step attempts to align the edges of the tracked object with thesemotion discontinuities. It makes use of local consensus among like-moving pixels to determinemembership in the tracked object.In order for tracking to begin, moving objects must be picked out. Furthermore, the trackingalgorithm occasionally loses a moving object, either because the object stops for too long, ordue to camera noise, or for some other reason. Here too it is necessary to �nd the approximatelocation of a moving object so that the tracking algorithm can resume tracking it.3.4 Finding moving objectsSegmentation, that is, picking out a moving object in the scene is a key element of the visionsystem. Static segmentation cues such as intensity or texture cannot be relied on, as we intend todeal with arbitrary moving objects. Our approach is similar to the use of gray-level histogramsfor segmentation [2], but we use motion rather than gray-levels as the segmentation modality.The pixels in a scene containing a moving object will tend to fall into two classes when groupedby their motion vectors. The pixels corresponding to the moving object will tend to have movedalong with the object, while the pixels corresponding to the rest of the scene will tend to havemoved in opposition to camera motion.The optical
ow �eld generated from a single pair of images may not distinguish the motionsof the object from those of the rest of the scene clearly. However, composing the motions fromseveral sequential pairs of frames to form cross temporal trajectories generates a reasonablyclusterable histogram, provided that the object has been moving. Once the trajectories havebeen histogrammed, the motions under the largest peak are considered to be the motion of thebackground, and the motions under the second largest peak to be those of the object. Pixels thathave exhibited the motions determined to correspond to the motion of the object are labeled aspart of the tracked object.This histogramming approach works quite well in practice, although it has some limitations.Objects must move over the course of several frames in order to be found. In addition, the5

segmentation scheme is theoretically restricted to certain camera motions, namely rotationsabout the horizontal and vertical axes passing through the camera's center of projection.We have explored a more general algorithm for picking out moving objects, however it hasnot yet been implemented to run in real-time. By utilizing the results of the stereo depthcomputation, moving objects of unknown shape can be picked out under fairly arbitrary cameramotion.The combination of a motion
ow �eld and a stereo depth map produces a 3-D motion vectorat every point in an image. Each 3-D motion vector is consistent with a number of rigid motionsof an object in 3-space. The individuation algorithm partitions a set of 3-D motion vectors intosubsets such that each subset is consistent with a single common rigid motion of an object. Thiscan be done e�ciently without ever reconstructing any of the constituent rigid motions.By making use of some distance geometry, a set of points that are undergoing a single motioncan be picked out from a set of n points in 4n simple operations. The underlying idea ofthe approach is that the inter-point distances between any set of points on a rigid object willstay constant in successive frames regardless of the motion the object is undergoing. Distancesbetween points on the object and points in the background will in general not remain constantfrom frame to frame (since the object is moving with respect to the background). This algorithmfor picking out moving objects is described in [11] in detail.3.5 Implementation notesThe algorithms we have developed are well-suited for e�cient implementation because of theiruniform and local nature. We make extensive use of a form of dynamic programming (sometimesreferred to as sliding sums) to share intermediate results between neighboring pixels.The tracking algorithm runs on a VX/MVX graphics accelerator in a Sun workstation. TheVX/MVX contains 5 Intel i860 processors, each of which is capable of 40 MIPS. The motioncomputation is done on 4 processors, which divide the image into (overlapped) slices. Theremainder of the computation is done on a single processor.The tracking system has been shown to work on a large variety of natural image sequences. Itworks both on indoor and outdoor scenes, although it is important that the scene have texture.The tracking system has been validated by mounting a camera on a PUMA robot arm andcontrolling camera rotations using tracking. The combined system, described in more detail insection 4, picks out an object and tracks it, rotating the camera in order to keep the object inthe �eld of view.Although the stereo algorithm has not yet been incorporated into the real-time system, itruns at approximately 8 Hz on 128 by 128 images on a uni-processor 40Mhz Sun Sparc-10.4 The robotic cameraWe have used the visual tracking system to provide real-time feedback for a robotic camera.We have con�gured a Puma 560 to rotate a camera to follow a moving object tracked by thevision system.The architecture of the robotic camera is shown in �gure 3. The camera's video signal issent to the vision system, which runs on a VX/MVX graphics accelerator. The vision systemcomputes the trajectory of the object's centroid, and send it via shared memory to a Motorola88k which is used to control the robot. The robot motion controller has been implementedusing COSMOS, an object-level control system based on the operational space approach [4].The operational point is the camera center of projection.Figure 4 shows a sequence of images taken from a camera mounted on the moving robotarm. The white contour shows the outline of the tracked object. In this sequence the camera ispanning to the right to follow the person. 6

VX/MVX Motorola 88kMotionVisionSystem RobotMotionControlPositions TorquesVideo Trajectory
Controller InterfaceFigure 3: The robotic camera system4.1 Handling latencyOne complication arises in the control of the robot, due to the latency involved in the visionsystem. By the time an object centroid has been computed, as much as a quarter second mayhave passed. So the object centroid that is emitted by the tracking service speci�es where theobject was relative to where the camera was pointed when the image was captured a quartersecond ago. There is no way to get around the fact that the information is old. However, giventhat the camera may be panning, information about object positions relative to the cameraheading of some time ago is quite useless, unless the camera heading at the time of imagecapture is known.Thus, the robot systems are set up so that whenever an image is captured, the current headingof the camera is also recorded. When a new object centroid is produced, it is combined with therecorded camera-heading information to compute a heading that would have been correct whenthe centroid was computed. This heading is out of date since it says how the camera shouldhave pointed when data that produced the current centroid was captured. However, it is thebest information available, and hence is speci�ed as the current desired heading for the camera.An alternative scheme would involve predicting the object's position, based on its velocity orperhaps its history. We have not yet investigated prediction-based approaches.5 ConclusionsWe have described a real-time vision system which can track objects based on their motion.This provides a basic capability for visual feedback, which can be used for controlling robots.In addition, we believe that our tracking system can supply a bottom-level visual service, andthat higher level visual capabilities can be constructed that make use of the information oursystem supplies. We hope that the system's ability to handle unmodeled non-rigid objects,combined with its real-time performance, will make it suitable for robot control in challengingunstructured environments.AcknowledgmentsJohn Wood�ll has been supported by an NSF postdoctoral grant and a fellowship from theShell Corporation. Ramin Zabih has been supported by a fellowship from the Fannie and JohnHertz Foundation. We wish to acknowledge additional �nancial support from Xerox PARC,CSLI, SRI and CIFE. We are grateful to Harlyn Baker, David Heeger, Dan Huttenlocher, andJim Mahoney for useful comments in the course of this work.7

References[1] David Coombs and Christopher Brown. Real-time smooth pursuit tracking for a movingbinocular head. In Proceedings of IEEE Conference on Computer Vision and PatternRecognition, 1992.[2] Berthold Horn. Robot Vision. The MIT Press, 1986.[3] Hirochika Inoue, Tetsuya Tachikawa, and Masayaki Inaba. Robot vision system with acorrelation chip for real-time tracking, optical
ow and depth map generation. ICRA,pages 1621{1626, 1992. Nice, France.[4] Oussama Khatib. A uni�ed approach for motion and force control of robot maniuplators:The operational space formulation. IEEE Journal of Robotics and Automation, RA-3(1):43{53, February 1987.[5] David Lowe. Integrated treatment of matching and measurement errors for robust model-based motion tracking. In Proceedings of International Conference on Computer Vision,pages 436{440, 1990.[6] Larry Matthies. Stereo vision for planetary rovers: Stochastic modeling to deformation ofimage curves. International Journal of Computer Vision, 8(1), 1992.[7] H. Keith Nishihara. Practical real-time imaging stereo matcher. Optical Engineering,23(5):536{545, Sept{Oct 1984. Also in Readings in Computer Vision: Issues, Problems,Principles, and Paradigms, edited by M.A. Fischler and O.Firschein, Morgan Kaufmann,Los Altos, 1987.[8] Tomaso Poggio, Vincent Torre, and Christof Koch. Computational vision and regularizationtheory. Nature, 317:314{319, 1985.[9] John Wood�ll. Motion Vision and Tracking for Robots in Dynamic, Unstructured Envi-ronments. PhD thesis, Stanford University, August 1992.[10] Brian Yamauchi and Randal Nelson. A behavior-based architecture for robots using real-time vision. In IEEE International Conference on Robotics and Automation, pages 1822{1827, 1991.[11] Ramin Zabih. Individuating Unknown Objects by Combining Motion and Stereo. PhDthesis, Stanford University, 1993 { Forthcoming.

8

Frame 1 Frame 2 Frame 3 Frame 4
Frame 5 Frame 6 Frame 7 Frame 8
Frame 9 Frame 10 Frame 11 Frame 12
Frame 13 Frame 14 Frame 15 Frame 16
Frame 17 Frame 18 Frame 19 Frame 20Figure 4: Tracking results9

